# Given a vector field, D=r sin φ ur-1/r sinθcosφuθ+r2uφ.he component of D triangle to the spherical surface, r=10 at P(10, 1500, 3000) is

1.  0.043uθ+100uφ

2.  -0.043uθ-100uφ

3.  110uθ+0.43uφ

4.  0.043uθ-100uφ

4

-0.043uθ-100uφ

Explanation :
No Explanation available for this question

# Circulation of F=x2ux-xzuy-y2uz around the path shown in the figure is

1.  -1/3

2.  1/6

3.  -1/6

4.  1/3

4

-1/6

Explanation :
No Explanation available for this question

# Circulation of A=pcosφup+zsinφuz around the edge L of the wedge shown in the figure is

1.  1

2.  -1

3.  0

4.  3

4

1

Explanation :
No Explanation available for this question

# Divergence of the vector A=z2cosφup+sin2φuz

1.  2pz2cosφup+sin2φuz

2.  2pz2cosφup-sin2φuz

3.  2z2cosφup+sin2φuz

4.  z sin 2φ/p+p2up

4

2z2cosφup+sin2φuz

Explanation :
No Explanation available for this question

# If A= psinφ up, and L is centroid of the figure, then circulation is

1.  7π+2

2.  7π-

3.  7π

4.  0

4

Explanation :
No Explanation available for this question

# If D=xyuy + zxuz, then  the value of is, where S is the surface of the cube defined by 0≤x≤1, 0≤y≤1, 0≤z≤1

1.  0.5

2.  3

3.  0

4.  1.5

4

1.5

Explanation :
No Explanation available for this question

# expression for B, given that in free space E=15 cos (6πx108t-2πz)ix V/m is

1.  5x108 cos (6πx108t-2πz)ix

2.  -90πx108 sin (6πx108t-2πz)ix

3.  -45x108 sin (6πx108t-2πz)iy

4.  5x108 [cos (6πx108t-2πz)-sin (6πx108t-2πz)ix]

4

5x108 cos (6πx108t-2πz)ix

Explanation :
No Explanation available for this question

# Which one of the following sets of equations is independent in Maxwell's equations

1.  Two curl equations

2.  Two divergence equations

3.  Both the curl and divergence auditions

4.  Two curl equations combined with the continuity equation

4

Both the curl and divergence auditions

Explanation :
No Explanation available for this question

# Solutions of Laplace's equation which are continuous through the second derivative, are called

1.  Bessel  functions

2.  odd functions

3.  harmonic  functions

4.  fundamental functions

4

harmonic  functions

Explanation :
No Explanation available for this question

# A boundary separates two magnetic materials of permeability μ1, μ2 . The magnetic field vector in μ1 is H1 with a normal component Hn1 and tangential component Hn2 with a normal component Ht2.Then the derived conditions would be

1.  H1=H2 and Ht1=Ht2

2.  Ht1=Ht2 and µ1Hn1= µ2Hn2

3.  H1=H2 and µ1Hn1= µ2Hn2

4.  H1=H2, and Ht1= Ht2 and µ1Hn1= µ2Hn2

4