Inverse of z - transform of A/(z-A2) is

1.  nAn u(n-1)

2.  nAn u(n+1)

3.  (n-1)A(n-1) u(n)

4.  nAn u(n)

4

nAn u(n)

Explanation :
No Explanation available for this question

A LTI System is stable if and if only if ROC of its system function H(z) includes the unit circle, i.e.

1.  | z | > 0

2.  | z | ≥ ±1

3.  | z | = 1

4.  | z | = 1/z-1k

4

| z | = 1

Explanation :
No Explanation available for this question

1.

2.

3.

4.

4

Explanation :
No Explanation available for this question

1.  1/1+α

2.  1/1+α2

3.  1/1 - α

4.  1/α

5.  Rs. 15

6.  Rs. 16

7.  Rs. 20

8.  Rs. 24

9.  Rs. 30

9

Rs. 16

Explanation :
No Explanation available for this question

1.  0

2.  2

3.  -1

4.  1

4

1

Explanation :
No Explanation available for this question

If z - transform ,X(z) of x(n) is rational and if x(n) is right hand sided ,then ROC is region of the z – plane outside outermost pole , i.e outside the circle of radius equal to the largest magnitude of the poles of

1.  X(n)

2.  x(n)

3.  z = 0

4.  X(z)

4

X(z)

Explanation :
No Explanation available for this question

z – transform of discrete – time signal is defined as

1.

2.

3.

4.

4

Explanation :
No Explanation available for this question

If x(n) ↔ X(z) x(n-k) ↔ z-k X(z) , then ROC of z-k X(z) is same as that X(z) except for z = 0 if K > 0 and z = ∞ if

1.  k = 0

2.  k ≥ 0

3.  k < 0

4.  k ≤ 0

4

k < 0

Explanation :
No Explanation available for this question

For an LTI System with input x(n) and unit impulse response h(x) specified as x(n) = 2n u(-n) and h(n) = u (n) , the value of

1.  1

2.  2

3.  3

4.  4

4

2

Explanation :
No Explanation available for this question

A casual LTI system with rational system function H(z) is stable if and only if all the poles of H(z) lie inside the unit circle i.e.they must all have magnitude

1.  greater than 1

2.  smaller than 1

3.  greater than equal to 1

4.  equal to zero

4