# If x(n) = -anu(-n-1), then z-transform and it’s ROC is

1.  X(z) = z/z-a |z|< a

2.  X(z) = 1/1+az-1|z|< a

3.  X(z) = 1/1-a-1z |z|< a

4.  X(z) = z/z-a |z|> a

4

X(z) = z/z-a |z|< a

Explanation :
No Explanation available for this question

# If X(z) = 1/1-az-1 then two discrete time signals are

1.  x(n) = anu(n) and x(n) = anu(-n)

2.  x(n) = anu(n) and x(n) = anu(-n-1)

3.  x(n) = anu(n) and x(n) = -anu(-n-1)

4.  none of the above

4

x(n) = anu(n) and x(n) = -anu(-n-1)

Explanation :
No Explanation available for this question

# If x(n) = [7(1/3)n u(n) – 6(1/2)n u(n)] , then ROC for the discrete time signal is

1.  |z|< 1/3

2.  |z|< 1/2

3.  | z| > 1/2

4.  |z| >1/3

4

| z| > 1/2

Explanation :
No Explanation available for this question

# For the z-transform X(z)=4z2+2+3z-1; 0 < |z|< ∞ x(n) is

1.  x(n) = 4δ [n-2] + 2δ [n] + 3δ [n+1]

2.  x(n) = 4δ [n+2] + 2 + 3δ [n-1]

3.  x(n) = 4δ [n+2] + 2δ [n] + 3δ [n-1]

4.  none of the above

4

x(n) = 4δ [n+2] + 2 + 3δ [n-1]

Explanation :
No Explanation available for this question

# If x(n) = b| n | , b>0 , then z-transform and it’s ROC is

1.

2.

3.

4.  none of the above

4 Explanation :
No Explanation available for this question

# An LTI system is stable if and only if ROC of it’s system function H(z)

1.  inside the unit circle |z|= 1

2.  includes the unit circle | z |= 1

3.  outside the unit circle | z |= 1

4.  none of the above

4

outside the unit circle | z |= 1

Explanation :
No Explanation available for this question

# If x(n) = {1,2,5,7,0,1}, then ROC of X(z) is entire z-plane except

1.  z = 0

2.  z = ∞

3.  z = 0 and z = ∞

4.  none of the above

4

z = 0

Explanation :
No Explanation available for this question

# If X (z) = log (1+ az-1), find X (n) if ROC is | z | > a

1.

2.

3.

4.

4 Explanation :
No Explanation available for this question

# z-transform and ROC of x(n) = [3(2)n – 4 (3)n ] u (n) is

1.

2.

3.

4.

4 Explanation :
No Explanation available for this question

# If x(n) = cos ω0nu (n) , then X(z) and it’s ROC is

1.

2.

3.

4.  None of the above

4 