An arbitrary vector X is an eigen vector of the matrix A= , if (a,b)=

1.  (0,2)

2.  (1,1)

3.  (0,1)

4.  (1,2)

4

(1,1)

Explanation :
No Explanation available for this question

For which value of K, followingsystem is consistent 2x-5ky+6z=0 Kx+2y-2z=0 2x+2y-kz=0

1.  1

2.  2

3.  3

4.  5

4

2

Explanation :
No Explanation available for this question

The value of λ for which the equations 2x+y+2z=0 X+y+3z=0 4x+y+λz=0 Have a non-zero solution, is

1.  2

2.  4

3.  6

4.  8

4

8

Explanation :
No Explanation available for this question

The system of equations a1x+a2y=0 b1x+b2y=0 where a1,a2,b1,b2, are real numbers, has a non-trivial solution if

1.  a1b1=a2b2

2.  a1b2=b1a2

3.  a1a2=b1b2

4.  none of these

4

a1b2=b1a2

Explanation :
No Explanation available for this question

Solution of the given matrix equation is

1.  x1=0,x2=0,x3=0

2.  x1=1,x2=1,x3=0

3.  x1=0,x2=1,x3=0

4.  x1=2,x2=-5,x4=-1

4

x1=0,x2=0,x3=0

Explanation :
No Explanation available for this question

The system of linear equations (4d-1)x+y+z=0 -y+z=0 (4d-1)z=0 Has a non-trivial solution,if d equals

1.  1/2

2.  1/4

3.  3/4

4.  1

4

1/4

Explanation :
No Explanation available for this question

If product of matrix A= and B= Is a null matrix, then and ? differ by an

1.  Odd multiple of π

2.  Even multiple of π

3.  Odd multiple of π/2

4.  Even multiple of π/2

4

Odd multiple of π/2

Explanation :
No Explanation available for this question

Inverse of the matrix is

1.

2.

3.

4.

4

Explanation :
No Explanation available for this question

Sum of the eigen values of the matrixfor real and negative values of x is

1.  Greater than zero

2.  Less than zero

3.  zero

4.  Zero defendant on the value of x

4

Greater than zero

Explanation :
No Explanation available for this question

The system of equations 4x+6y+8z=0 7x+8y+9z=0 3x+2y+z=0 Has

1.  No solution

2.  Only one solution

3.  Two solutions

4.  Infinite number of solutions

4