The impedance looking into nodes 1 and 2 the given circuit is

1.   50

2.  100 ?

3.  5K ?

4.  10.1k ?

4

50

Explanation :
No Explanation available for this question

W hich of the following assertions are CORRECT P: Adding 7 to each entry in a list adds 7 to the mean of the list Q: Adding 7 to each entry in a list adds 7 to the standard deviation of the list R: Doubling each entry in a list doubles the mean of the list S: Doubling each entry in a list leaves the standard deviation of the list unchanged

1.  P, Q

2.  Q, R

3.  P, R

4.  R, S

4

P, R

Explanation :
No Explanation available for this question

If 137 + 276 = 435 how much is 731 + 672

1.  534

2.  1403

3.  1623

4.  1513

4

1623

Explanation :
No Explanation available for this question

Given digits 2, 2, 3, 3, 4, 4, 4, 4 how many distinct 4 digit numbers greater than 3000 can be formed

1.  50

2.  51

3.  52

4.  54

4

51

Explanation :
No Explanation available for this question

equals

1.  1

2.  -1

3.  ∞

4.  -∞

4

1

Explanation :
No Explanation available for this question

In the Karnaugh map shown below, X denotes a don't care term. What is the minimal form of the function represented by the Karnaugh map

1.

2.

3.

4.

4

Explanation :
No Explanation available for this question

Given f1, f3 and f in canonical sum of products form (in decimal) for the circuit f1 = Σ m (4, 5, 6, 7, 8) f3 = Σ m (1, 6, 15) f = Σ m (1, 6, 8, 15) then f2 is

1.  Σ m (4, 6)

2.  Σ m (4, 8)

3.  Σ m (6, 8)

4.  Σ m (4, 6, 8)

4

Σ m (6, 8)

Explanation :
No Explanation available for this question

The minimum number of equal length subintervals needed to approximate  to an accuracy of at least (1/3) x 10-6 using the trapezoidal rule is

1.  1000 e

2.  1000

3.  100 e

4.  100

4

1000 e

Explanation :
No Explanation available for this question

The Newton-Raphson iteration xn+1 = (1/2)(xn + (R/xn)) can be used to compute the

1.  square of R

2.  reciprocal of R

3.  square root of R

4.  logarithm of R

4

square root of R

Explanation :
No Explanation available for this question

1.

2.

3.

4.

4