A. 2x-3y-13=0

B. x-y-3=0

C. x+2y-5=0

D. 2x+3y+13=0

From the point A(0,3) on the circle x^{2}+4x+(y-3)^{2}=0, a chord, AB is drawn and extended to a point P, such that AP = 2AB. The locus of P is

If α,β,γ are the roots of x^{3}-x^{2}+33x+5=0 and A=s_{1},B=s_{2},C=s_{3} then the descending order of A,B,C is

If the circles x^{2}+y^{2}+2x-2y+4=0 cuts the circle x^{2}+y^{2}+4x-2fy+2=0 orthogonally, then f=

If the circles x^{2}+y^{2}-4x+6y+8=0, x^{2}+y^{2}-10x-6y+14=0 touch each other , then the point of contact is

If the lines x+2y+k=0, x+y-3=0 are conjugate w.r.t the circle x^{2}+yu^{2}=9 then k=