A. 2

B. √2

C. 1/√2

D. 2√2

A curve passes through the point (2, 0) and the slope of the tangent at any point is x^{2}-2x for all values of x. The point of maximum or donation the curve is

The function f(x) = tan x has

f(x)= x-1/x is

The function f(x)=cot^{-1} x+x increases in the interval

The point P in the first quadrant of the ellipse x^{2}/8+y^{2}/18=1 so that the area of the triangle formed by the tangent at P and the coordinate axes is least